Toggle navigation
在线编辑器
在线代码
文本比较
jQuery下载
前端库
在线手册
登录/注册
下载代码
html
css
js
分享到微信朋友圈
X
html
css
body,html{ background: #000; margin: 0; height: 100vh; overflow: hidden; } #c{ background:#000; position: absolute; left: 50%; top: 50%; transform: translate(-50%, -50%); }
JavaScript
c = document.querySelector('#c') c.width = 1920 c.height = 1080 x = c.getContext('2d') C = Math.cos S = Math.sin t = 0 T = Math.tan rsz=window.onresize=()=>{ setTimeout(()=>{ if(document.body.clientWidth > document.body.clientHeight*1.77777778){ c.style.height = '100vh' setTimeout(()=>c.style.width = c.clientHeight*1.77777778+'px',0) }else{ c.style.width = '100vw' setTimeout(()=>c.style.height = c.clientWidth/1.77777778 + 'px',0) } },0) } rsz() async function Draw(){ oX=oY=oZ=0 if(!t){ R=R2=(Rl,Pt,Yw,m)=>{ M=Math A=M.atan2 H=M.hypot X=S(p=A(X,Z)+Yw)*(d=H(X,Z)) Z=C(p)*d Y=S(p=A(Y,Z)+Pt)*(d=H(Y,Z)) Z=C(p)*d X=S(p=A(X,Y)+Rl)*(d=H(X,Y)) Y=C(p)*d if(m){ X+=oX Y+=oY Z+=oZ } } Q=()=>[c.width/2+X/Z*900,c.height/2+Y/Z*900] I=(A,B,M,D,E,F,G,H)=>(K=((G-E)*(B-F)-(H-F)*(A-E))/(J=(H-F)*(M-A)-(G-E)*(D-B)))>=0&&K<=1&&(L=((M-A)*(B-F)-(D-B)*(A-E))/J)>=0&&L<=1?[A+K*(M-A),B+K*(D-B)]:0 Rn = Math.random async function loadOBJ(url, scale, tx, ty, tz, rl, pt, yw) { let res await fetch(url, res => res).then(data=>data.text()).then(data=>{ a=[] data.split("\nv ").map(v=>{ a=[...a, v.split("\n")[0]] }) a=a.filter((v,i)=>i).map(v=>[...v.split(' ').map(n=>(+n.replace("\n", '')))]) ax=ay=az=0 a.map(v=>{ v[1]*=-1 ax+=v[0] ay+=v[1] az+=v[2] }) ax/=a.length ay/=a.length az/=a.length a.map(v=>{ X=(v[0]-ax)*scale Y=(v[1]-ay)*scale Z=(v[2]-az)*scale R2(rl,pt,yw,0) v[0]=X v[1]=Y v[2]=Z }) maxY=-6e6 a.map(v=>{ if(v[1]>maxY)maxY=v[1] }) a.map(v=>{ v[1]-=maxY-oY v[0]+=tx v[1]+=ty v[2]+=tz }) b=[] data.split("\nf ").map(v=>{ b=[...b, v.split("\n")[0]] }) b.shift() b=b.map(v=>v.split(' ')) b=b.map(v=>{ v=v.map(q=>{ return +q.split('/')[0] }) v=v.filter(q=>q) return v }) res=[] b.map(v=>{ e=[] v.map(q=>{ e=[...e, a[q-1]] }) e = e.filter(q=>q) res=[...res, e] }) }) return res } geoSphere = (mx, my, mz, iBc, size) => { let collapse=0 let B=Array(iBc).fill().map(v=>{ X = Rn()-.5 Y = Rn()-.5 Z = Rn()-.5 return [X,Y,Z] }) for(let m=200;m--;){ B.map((v,i)=>{ X = v[0] Y = v[1] Z = v[2] B.map((q,j)=>{ if(j!=i){ X2=q[0] Y2=q[1] Z2=q[2] d=1+(Math.hypot(X-X2,Y-Y2,Z-Z2)*(3+iBc/40)*3)**4 X+=(X-X2)*500/d Y+=(Y-Y2)*500/d Z+=(Z-Z2)*500/d } }) d=Math.hypot(X,Y,Z) v[0]=X/d v[1]=Y/d v[2]=Z/d if(collapse){ d=25+Math.hypot(X,Y,Z) v[0]=(X-X/d)/1.1 v[1]=(Y-Y/d)/1.1 v[2]=(Z-Z/d)/1.1 } }) } mind = 6e6 B.map((v,i)=>{ X1 = v[0] Y1 = v[1] Z1 = v[2] B.map((q,j)=>{ X2 = q[0] Y2 = q[1] Z2 = q[2] if(i!=j){ d = Math.hypot(a=X1-X2, b=Y1-Y2, e=Z1-Z2) if(d
{ X1 = v[0] Y1 = v[1] Z1 = v[2] B.map((q,j)=>{ X2 = q[0] Y2 = q[1] Z2 = q[2] if(i!=j){ d = Math.hypot(X1-X2, Y1-Y2, Z1-Z2) if(d
q[0]==X2&&q[1]==Y2&&q[2]==Z2&&q[3]==X1&&q[4]==Y1&&q[5]==Z1).length) a = [...a, [X1*size,Y1*size,Z1*size,X2*size,Y2*size,Z2*size]] } } }) }) B.map(v=>{ v[0]*=size v[1]*=size v[2]*=size v[0]+=mx v[1]+=my v[2]+=mz }) return [mx, my, mz, size, B, a] } lineFaceI = (X1, Y1, Z1, X2, Y2, Z2, facet, autoFlipNormals=false, showNormals=false) => { let X_, Y_, Z_, d, m, l_,K,J,L,p let I_=(A,B,M,D,E,F,G,H)=>(K=((G-E)*(B-F)-(H-F)*(A-E))/(J=(H-F)*(M-A)-(G-E)*(D-B)))>=0&&K<=1&&(L=((M-A)*(B-F)-(D-B)*(A-E))/J)>=0&&L<=1?[A+K*(M-A),B+K*(D-B)]:0 let Q_=()=>[c.width/2+X_/Z_*900,c.height/2+Y_/Z_*900] let R_ = (Rl,Pt,Yw,m)=>{ let M=Math, A=M.atan2, H=M.hypot X_=S(p=A(X_,Y_)+Rl)*(d=H(X_,Y_)),Y_=C(p)*d,X_=S(p=A(X_,Z_)+Yw)*(d=H(X_,Z_)),Z_=C(p)*d,Y_=S(p=A(Y_,Z_)+Pt)*(d=H(Y_,Z_)),Z_=C(p)*d if(m){ X_+=oX,Y_+=oY,Z_+=oZ } } let rotSwitch = m =>{ switch(m){ case 0: R_(0,0,Math.PI/2); break case 1: R_(0,Math.PI/2,0); break case 2: R_(Math.PI/2,0,Math.PI/2); break } } let ax = 0, ay = 0, az = 0 facet.map(q_=>{ ax += q_[0], ay += q_[1], az += q_[2] }) ax /= facet.length, ay /= facet.length, az /= facet.length let b1 = facet[2][0]-facet[1][0], b2 = facet[2][1]-facet[1][1], b3 = facet[2][2]-facet[1][2] let c1 = facet[1][0]-facet[0][0], c2 = facet[1][1]-facet[0][1], c3 = facet[1][2]-facet[0][2] let crs = [b2*c3-b3*c2,b3*c1-b1*c3,b1*c2-b2*c1] d = Math.hypot(...crs)+.001 let nls = 1 //normal line length crs = crs.map(q=>q/d*nls) let X1_ = ax, Y1_ = ay, Z1_ = az let flip = 1 if(autoFlipNormals){ let d1_ = Math.hypot(X1_-X1,Y1_-Y1,Z1_-Z1) let d2_ = Math.hypot(X1-(ax + crs[0]/99),Y1-(ay + crs[1]/99),Z1-(az + crs[2]/99)) flip = d2_>d1_?-1:1 } let X2_ = ax + (crs[0]*=flip), Y2_ = ay + (crs[1]*=flip), Z2_ = az + (crs[2]*=flip) if(showNormals){ x.beginPath() X_ = X1_, Y_ = Y1_, Z_ = Z1_ R_(Rl,Pt,Yw,1) if(Z_>0) x.lineTo(...Q_()) X_ = X2_, Y_ = Y2_, Z_ = Z2_ R_(Rl,Pt,Yw,1) if(Z_>0) x.lineTo(...Q_()) x.lineWidth = 5 x.strokeStyle='#0f04' x.stroke() } let p1_ = Math.atan2(X2_-X1_,Z2_-Z1_) let p2_ = -(Math.acos((Y2_-Y1_)/(Math.hypot(X2_-X1_,Y2_-Y1_,Z2_-Z1_)+.001))+Math.PI/2) let isc = false, iscs = [false,false,false] X_ = X1, Y_ = Y1, Z_ = Z1 R_(0,-p2_,-p1_) let rx_ = X_, ry_ = Y_, rz_ = Z_ for(let m=3;m--;){ if(isc === false){ X_ = rx_, Y_ = ry_, Z_ = rz_ rotSwitch(m) X1_ = X_, Y1_ = Y_, Z1_ = Z_ = 5, X_ = X2, Y_ = Y2, Z_ = Z2 R_(0,-p2_,-p1_) rotSwitch(m) X2_ = X_, Y2_ = Y_, Z2_ = Z_ facet.map((q_,j_)=>{ if(isc === false){ let l = j_ X_ = facet[l][0], Y_ = facet[l][1], Z_ = facet[l][2] R_(0,-p2_,-p1_) rotSwitch(m) let X3_=X_, Y3_=Y_, Z3_=Z_ l = (j_+1)%facet.length X_ = facet[l][0], Y_ = facet[l][1], Z_ = facet[l][2] R_(0,-p2_,-p1_) rotSwitch(m) let X4_ = X_, Y4_ = Y_, Z4_ = Z_ if(l_=I_(X1_,Y1_,X2_,Y2_,X3_,Y3_,X4_,Y4_)) iscs[m] = l_ } }) } } if(iscs.filter(v=>v!==false).length==3){ let iscx = iscs[1][0], iscy = iscs[0][1], iscz = iscs[0][0] let pointInPoly = true ax=0, ay=0, az=0 facet.map((q_, j_)=>{ ax+=q_[0], ay+=q_[1], az+=q_[2] }) ax/=facet.length, ay/=facet.length, az/=facet.length X_ = ax, Y_ = ay, Z_ = az R_(0,-p2_,-p1_) X1_ = X_, Y1_ = Y_, Z1_ = Z_ X2_ = iscx, Y2_ = iscy, Z2_ = iscz facet.map((q_,j_)=>{ if(pointInPoly){ let l = j_ X_ = facet[l][0], Y_ = facet[l][1], Z_ = facet[l][2] R_(0,-p2_,-p1_) let X3_ = X_, Y3_ = Y_, Z3_ = Z_ l = (j_+1)%facet.length X_ = facet[l][0], Y_ = facet[l][1], Z_ = facet[l][2] R_(0,-p2_,-p1_) let X4_ = X_, Y4_ = Y_, Z4_ = Z_ if(I_(X1_,Y1_,X2_,Y2_,X3_,Y3_,X4_,Y4_)) pointInPoly = false } }) if(pointInPoly){ X_ = iscx, Y_ = iscy, Z_ = iscz R_(0,p2_,0) R_(0,0,p1_) isc = [[X_,Y_,Z_], [crs[0],crs[1],crs[2]]] } } return isc } TruncatedOctahedron = ls => { let shp = [], a = [] mind = 6e6 for(let i=6;i--;){ X = S(p=Math.PI*2/6*i+Math.PI/6)*ls Y = C(p)*ls Z = 0 if(Y
{ X = v[0] Y = v[1] - mind Z = v[2] R(0,theta,0) v[0] = X v[1] = Y v[2] = Z+1.5 }) b = JSON.parse(JSON.stringify(a)).map(v=>{ v[1] *= -1 return v }) shp = [...shp, a, b] e = JSON.parse(JSON.stringify(shp)).map(v=>{ v.map(q=>{ X = q[0] Y = q[1] Z = q[2] R(0,0,Math.PI) q[0] = X q[1] = Y q[2] = Z }) return v }) shp = [...shp, ...e] e = JSON.parse(JSON.stringify(shp)).map(v=>{ v.map(q=>{ X = q[0] Y = q[1] Z = q[2] R(0,0,Math.PI/2) q[0] = X q[1] = Y q[2] = Z }) return v }) shp = [...shp, ...e] coords = [ [[3,1],[4,3],[4,4],[3,2]], [[3,4],[3,3],[2,4],[6,2]], [[1,4],[0,3],[0,4],[4,2]], [[1,1],[1,2],[6,4],[7,3]], [[3,5],[7,5],[1,5],[3,0]], [[2,5],[6,5],[0,5],[4,5]] ] a = [] coords.map(v=>{ b = [] v.map(q=>{ X = shp[q[0]][q[1]][0] Y = shp[q[0]][q[1]][1] Z = shp[q[0]][q[1]][2] b = [...b, [X,Y,Z]] }) a = [...a, b] }) shp = [...shp, ...a] return shp.map(v=>{ v.map(q=>{ q[0]/=3 q[1]/=3 q[2]/=3 q[0]*=ls q[1]*=ls q[2]*=ls }) return v }) } Cylinder = (rw,cl,ls1,ls2) => { let a = [] for(let i=rw;i--;){ let b = [] for(let j=cl;j--;){ X = S(p=Math.PI*2/cl*j) * ls1 Y = (1/rw*i-.5)*ls2 Z = C(p) * ls1 b = [...b, [X,Y,Z]] } //a = [...a, b] for(let j=cl;j--;){ b = [] X = S(p=Math.PI*2/cl*j) * ls1 Y = (1/rw*i-.5)*ls2 Z = C(p) * ls1 b = [...b, [X,Y,Z]] X = S(p=Math.PI*2/cl*(j+1)) * ls1 Y = (1/rw*i-.5)*ls2 Z = C(p) * ls1 b = [...b, [X,Y,Z]] X = S(p=Math.PI*2/cl*(j+1)) * ls1 Y = (1/rw*(i+1)-.5)*ls2 Z = C(p) * ls1 b = [...b, [X,Y,Z]] X = S(p=Math.PI*2/cl*j) * ls1 Y = (1/rw*(i+1)-.5)*ls2 Z = C(p) * ls1 b = [...b, [X,Y,Z]] a = [...a, b] } } b = [] for(let j=cl;j--;){ X = S(p=Math.PI*2/cl*j) * ls1 Y = ls2/2 Z = C(p) * ls1 b = [...b, [X,Y,Z]] } //a = [...a, b] return a } Tetrahedron = size => { ret = [] a = [] let h = size/1.4142/1.25 for(i=3;i--;){ X = S(p=Math.PI*2/3*i) * size/1.25 Y = C(p) * size/1.25 Z = h a = [...a, [X,Y,Z]] } ret = [...ret, a] for(j=3;j--;){ a = [] X = 0 Y = 0 Z = -h a = [...a, [X,Y,Z]] X = S(p=Math.PI*2/3*j) * size/1.25 Y = C(p) * size/1.25 Z = h a = [...a, [X,Y,Z]] X = S(p=Math.PI*2/3*(j+1)) * size/1.25 Y = C(p) * size/1.25 Z = h a = [...a, [X,Y,Z]] ret = [...ret, a] } ax=ay=az=ct=0 ret.map(v=>{ v.map(q=>{ ax+=q[0] ay+=q[1] az+=q[2] ct++ }) }) ax/=ct ay/=ct az/=ct ret.map(v=>{ v.map(q=>{ q[0]-=ax q[1]-=ay q[2]-=az }) }) return ret } Cube = size => { for(CB=[],j=6;j--;CB=[...CB,b])for(b=[],i=4;i--;)b=[...b,[(a=[S(p=Math.PI*2/4*i+Math.PI/4),C(p),2**.5/2])[j%3]*(l=j<3?size/1.5:-size/1.5),a[(j+1)%3]*l,a[(j+2)%3]*l]] return CB } Octahedron = size => { ret = [] let h = size/1.25 for(j=8;j--;){ a = [] X = 0 Y = 0 Z = h * (j<4?-1:1) a = [...a, [X,Y,Z]] X = S(p=Math.PI*2/4*j) * size/1.25 Y = C(p) * size/1.25 Z = 0 a = [...a, [X,Y,Z]] X = S(p=Math.PI*2/4*(j+1)) * size/1.25 Y = C(p) * size/1.25 Z = 0 a = [...a, [X,Y,Z]] ret = [...ret, a] } return ret } Dodecahedron = size => { ret = [] a = [] mind = -6e6 for(i=5;i--;){ X=S(p=Math.PI*2/5*i + Math.PI/5) Y=C(p) Z=0 if(Y>mind) mind=Y a = [...a, [X,Y,Z]] } a.map(v=>{ X = v[0] Y = v[1]-=mind Z = v[2] R(0, .553573, 0) v[0] = X v[1] = Y v[2] = Z }) b = JSON.parse(JSON.stringify(a)) b.map(v=>{ v[1] *= -1 }) ret = [...ret, a, b] mind = -6e6 ret.map(v=>{ v.map(q=>{ X = q[0] Y = q[1] Z = q[2] if(Z>mind)mind = Z }) }) d1=Math.hypot(ret[0][0][0]-ret[0][1][0],ret[0][0][1]-ret[0][1][1],ret[0][0][2]-ret[0][1][2]) ret.map(v=>{ v.map(q=>{ q[2]-=mind+d1/2 }) }) b = JSON.parse(JSON.stringify(ret)) b.map(v=>{ v.map(q=>{ q[2]*=-1 }) }) ret = [...ret, ...b] b = JSON.parse(JSON.stringify(ret)) b.map(v=>{ v.map(q=>{ X = q[0] Y = q[1] Z = q[2] R(0,0,Math.PI/2) R(0,Math.PI/2,0) q[0] = X q[1] = Y q[2] = Z }) }) e = JSON.parse(JSON.stringify(ret)) e.map(v=>{ v.map(q=>{ X = q[0] Y = q[1] Z = q[2] R(0,0,Math.PI/2) R(Math.PI/2,0,0) q[0] = X q[1] = Y q[2] = Z }) }) ret = [...ret, ...b, ...e] ret.map(v=>{ v.map(q=>{ q[0] *= size/2 q[1] *= size/2 q[2] *= size/2 }) }) return ret } Icosahedron = size => { ret = [] B = [ [[0,3],[1,0],[2,2]], [[0,3],[1,0],[1,3]], [[0,3],[2,3],[1,3]], [[0,2],[2,1],[1,0]], [[0,2],[1,3],[1,0]], [[0,2],[1,3],[2,0]], [[0,3],[2,2],[0,0]], [[1,0],[2,2],[2,1]], [[1,1],[2,2],[2,1]], [[1,1],[2,2],[0,0]], [[1,1],[2,1],[0,1]], [[0,2],[2,1],[0,1]], [[2,0],[1,2],[2,3]], [[0,0],[0,3],[2,3]], [[1,3],[2,0],[2,3]], [[2,3],[0,0],[1,2]], [[1,2],[2,0],[0,1]], [[0,0],[1,2],[1,1]], [[0,1],[1,2],[1,1]], [[0,2],[2,0],[0,1]], ] for(p=[1,1],i=38;i--;)p=[...p,p[l=p.length-1]+p[l-1]] phi = p[l]/p[l-1] a = [ [-phi,-1,0], [phi,-1,0], [phi,1,0], [-phi,1,0], ] for(j=3;j--;ret=[...ret, b])for(b=[],i=4;i--;) b = [...b, [a[i][j],a[i][(j+1)%3],a[i][(j+2)%3]]] ret.map(v=>{ v.map(q=>{ q[0]*=size/2.25 q[1]*=size/2.25 q[2]*=size/2.25 }) }) cp = JSON.parse(JSON.stringify(ret)) out=[] a = [] B.map(v=>{ idx1a = v[0][0] idx2a = v[1][0] idx3a = v[2][0] idx1b = v[0][1] idx2b = v[1][1] idx3b = v[2][1] a = [...a, [cp[idx1a][idx1b],cp[idx2a][idx2b],cp[idx3a][idx3b]]] }) out = [...out, ...a] return out } stroke = (scol, fcol, lwo=1, od=true, oga=1) => { if(scol){ //x.closePath() if(od) x.globalAlpha = .2*oga x.strokeStyle = scol x.lineWidth = Math.min(1000,100*lwo/Z) if(od) x.stroke() x.lineWidth /= 4 x.globalAlpha = 1*oga x.stroke() } if(fcol){ x.globalAlpha = 1*oga x.fillStyle = fcol x.fill() } } subbed = (subs, size, sphereize, shape) => { for(let m=subs; m--;){ base = shape shape = [] base.map(v=>{ l = 0 X1 = v[l][0] Y1 = v[l][1] Z1 = v[l][2] l = 1 X2 = v[l][0] Y2 = v[l][1] Z2 = v[l][2] l = 2 X3 = v[l][0] Y3 = v[l][1] Z3 = v[l][2] if(v.length > 3){ l = 3 X4 = v[l][0] Y4 = v[l][1] Z4 = v[l][2] if(v.length > 4){ l = 4 X5 = v[l][0] Y5 = v[l][1] Z5 = v[l][2] } } mx1 = (X1+X2)/2 my1 = (Y1+Y2)/2 mz1 = (Z1+Z2)/2 mx2 = (X2+X3)/2 my2 = (Y2+Y3)/2 mz2 = (Z2+Z3)/2 a = [] switch(v.length){ case 3: mx3 = (X3+X1)/2 my3 = (Y3+Y1)/2 mz3 = (Z3+Z1)/2 X = X1, Y = Y1, Z = Z1, a = [...a, [X,Y,Z]] X = mx1, Y = my1, Z = mz1, a = [...a, [X,Y,Z]] X = mx3, Y = my3, Z = mz3, a = [...a, [X,Y,Z]] shape = [...shape, a] a = [] X = mx1, Y = my1, Z = mz1, a = [...a, [X,Y,Z]] X = X2, Y = Y2, Z = Z2, a = [...a, [X,Y,Z]] X = mx2, Y = my2, Z = mz2, a = [...a, [X,Y,Z]] shape = [...shape, a] a = [] X = mx3, Y = my3, Z = mz3, a = [...a, [X,Y,Z]] X = mx2, Y = my2, Z = mz2, a = [...a, [X,Y,Z]] X = X3, Y = Y3, Z = Z3, a = [...a, [X,Y,Z]] shape = [...shape, a] a = [] X = mx1, Y = my1, Z = mz1, a = [...a, [X,Y,Z]] X = mx2, Y = my2, Z = mz2, a = [...a, [X,Y,Z]] X = mx3, Y = my3, Z = mz3, a = [...a, [X,Y,Z]] shape = [...shape, a] break case 4: mx3 = (X3+X4)/2 my3 = (Y3+Y4)/2 mz3 = (Z3+Z4)/2 mx4 = (X4+X1)/2 my4 = (Y4+Y1)/2 mz4 = (Z4+Z1)/2 cx = (X1+X2+X3+X4)/4 cy = (Y1+Y2+Y3+Y4)/4 cz = (Z1+Z2+Z3+Z4)/4 X = X1, Y = Y1, Z = Z1, a = [...a, [X,Y,Z]] X = mx1, Y = my1, Z = mz1, a = [...a, [X,Y,Z]] X = cx, Y = cy, Z = cz, a = [...a, [X,Y,Z]] X = mx4, Y = my4, Z = mz4, a = [...a, [X,Y,Z]] shape = [...shape, a] a = [] X = mx1, Y = my1, Z = mz1, a = [...a, [X,Y,Z]] X = X2, Y = Y2, Z = Z2, a = [...a, [X,Y,Z]] X = mx2, Y = my2, Z = mz2, a = [...a, [X,Y,Z]] X = cx, Y = cy, Z = cz, a = [...a, [X,Y,Z]] shape = [...shape, a] a = [] X = cx, Y = cy, Z = cz, a = [...a, [X,Y,Z]] X = mx2, Y = my2, Z = mz2, a = [...a, [X,Y,Z]] X = X3, Y = Y3, Z = Z3, a = [...a, [X,Y,Z]] X = mx3, Y = my3, Z = mz3, a = [...a, [X,Y,Z]] shape = [...shape, a] a = [] X = mx4, Y = my4, Z = mz4, a = [...a, [X,Y,Z]] X = cx, Y = cy, Z = cz, a = [...a, [X,Y,Z]] X = mx3, Y = my3, Z = mz3, a = [...a, [X,Y,Z]] X = X4, Y = Y4, Z = Z4, a = [...a, [X,Y,Z]] shape = [...shape, a] break case 5: cx = (X1+X2+X3+X4+X5)/5 cy = (Y1+Y2+Y3+Y4+Y5)/5 cz = (Z1+Z2+Z3+Z4+Z5)/5 mx3 = (X3+X4)/2 my3 = (Y3+Y4)/2 mz3 = (Z3+Z4)/2 mx4 = (X4+X5)/2 my4 = (Y4+Y5)/2 mz4 = (Z4+Z5)/2 mx5 = (X5+X1)/2 my5 = (Y5+Y1)/2 mz5 = (Z5+Z1)/2 X = X1, Y = Y1, Z = Z1, a = [...a, [X,Y,Z]] X = X2, Y = Y2, Z = Z2, a = [...a, [X,Y,Z]] X = cx, Y = cy, Z = cz, a = [...a, [X,Y,Z]] shape = [...shape, a] a = [] X = X2, Y = Y2, Z = Z2, a = [...a, [X,Y,Z]] X = X3, Y = Y3, Z = Z3, a = [...a, [X,Y,Z]] X = cx, Y = cy, Z = cz, a = [...a, [X,Y,Z]] shape = [...shape, a] a = [] X = X3, Y = Y3, Z = Z3, a = [...a, [X,Y,Z]] X = X4, Y = Y4, Z = Z4, a = [...a, [X,Y,Z]] X = cx, Y = cy, Z = cz, a = [...a, [X,Y,Z]] shape = [...shape, a] a = [] X = X4, Y = Y4, Z = Z4, a = [...a, [X,Y,Z]] X = X5, Y = Y5, Z = Z5, a = [...a, [X,Y,Z]] X = cx, Y = cy, Z = cz, a = [...a, [X,Y,Z]] shape = [...shape, a] a = [] X = X5, Y = Y5, Z = Z5, a = [...a, [X,Y,Z]] X = X1, Y = Y1, Z = Z1, a = [...a, [X,Y,Z]] X = cx, Y = cy, Z = cz, a = [...a, [X,Y,Z]] shape = [...shape, a] a = [] break } }) } if(sphereize){ ip1 = sphereize ip2 = 1-sphereize shape = shape.map(v=>{ v = v.map(q=>{ X = q[0] Y = q[1] Z = q[2] d = Math.hypot(X,Y,Z) X /= d Y /= d Z /= d X *= size*.75*ip1 + d*ip2 Y *= size*.75*ip1 + d*ip2 Z *= size*.75*ip1 + d*ip2 return [X,Y,Z] }) return v }) } return shape } subDividedIcosahedron = (size, subs, sphereize = 0) => subbed(subs, size, sphereize, Icosahedron(size)) subDividedTetrahedron = (size, subs, sphereize = 0) => subbed(subs, size, sphereize, Tetrahedron(size)) subDividedOctahedron = (size, subs, sphereize = 0) => subbed(subs, size, sphereize, Octahedron(size)) subDividedCube = (size, subs, sphereize = 0) => subbed(subs, size, sphereize, Cube(size)) subDividedDodecahedron = (size, subs, sphereize = 0) => subbed(subs, size, sphereize, Dodecahedron(size)) Rn = Math.random LsystemRecurse = (size, splits, p1, p2, stem, theta, LsystemReduction, twistFactor) => { if(size < .25) return let X1 = stem[0] let Y1 = stem[1] let Z1 = stem[2] let X2 = stem[3] let Y2 = stem[4] let Z2 = stem[5] let p1a = Math.atan2(X2-X1,Z2-Z1) let p2a = -Math.acos((Y2-Y1)/(Math.hypot(X2-X1,Y2-Y1,Z2-Z1)+.0001))+Math.PI size/=LsystemReduction for(let i=splits;i--;){ X = 0 Y = -size Z = 0 R(0, theta, 0) R(0, 0, Math.PI*2/splits*i+twistFactor) R(0, p2a, 0) R(0, 0, p1a+twistFactor) X+=X2 Y+=Y2 Z+=Z2 let newStem = [X2, Y2, Z2, X, Y, Z] Lshp = [...Lshp, newStem] LsystemRecurse(size, splits, p1+Math.PI*2/splits*i+twistFactor, p2+theta, newStem, theta, LsystemReduction, twistFactor) } } DrawLsystem = shp => { shp.map(v=>{ x.beginPath() X = v[0] Y = v[1] Z = v[2] R(Rl,Pt,Yw,1) if(Z>0)x.lineTo(...Q()) X = v[3] Y = v[4] Z = v[5] R(Rl,Pt,Yw,1) if(Z>0)x.lineTo(...Q()) lwo = Math.hypot(v[0]-v[3],v[1]-v[4],v[2]-v[5])*4 stroke('#0f82','',lwo) }) } Lsystem = (size, splits, theta, LsystemReduction, twistFactor) => { Lshp = [] stem = [0,0,0,0,-size,0] Lshp = [...Lshp, stem] LsystemRecurse(size, splits, 0, 0, stem, theta, LsystemReduction, twistFactor) Lshp.map(v=>{ v[1]+=size*1.5 v[4]+=size*1.5 }) return Lshp } Sphere = (ls, rw, cl) => { a = [] ls/=1.25 for(j = rw; j--;){ for(i = cl; i--;){ b = [] X = S(p = Math.PI*2/cl*i) * S(q = Math.PI/rw*j) * ls Y = C(q) * ls Z = C(p) * S(q) * ls b = [...b, [X,Y,Z]] X = S(p = Math.PI*2/cl*(i+1)) * S(q = Math.PI/rw*j) * ls Y = C(q) * ls Z = C(p) * S(q) * ls b = [...b, [X,Y,Z]] X = S(p = Math.PI*2/cl*(i+1)) * S(q = Math.PI/rw*(j+1)) * ls Y = C(q) * ls Z = C(p) * S(q) * ls b = [...b, [X,Y,Z]] X = S(p = Math.PI*2/cl*i) * S(q = Math.PI/rw*(j+1)) * ls Y = C(q) * ls Z = C(p) * S(q) * ls b = [...b, [X,Y,Z]] a = [...a, b] } } return a } Torus = (rw, cl, ls1, ls2, parts=1, twists=0, part_spacing=1.5) => { let ret = [], tx=0, ty=0, tz=0 for(let m=parts;m--;){ avgs = Array(rw).fill().map(v=>[0,0,0]) for(j=rw;j--;)for(let i = cl;i--;){ if(parts>1){ ls3 = ls1*part_spacing X = S(p=Math.PI*2/parts*m) * ls3 Y = C(p) * ls3 Z = 0 R(prl1 = Math.PI*2/rw*(j-1)*twists,0,0) tx1 = X ty1 = Y tz1 = Z R(0, 0, Math.PI*2/rw*(j-1)) ax1 = X ay1 = Y az1 = Z X = S(p=Math.PI*2/parts*m) * ls3 Y = C(p) * ls3 Z = 0 R(prl2 = Math.PI*2/rw*(j)*twists,0,0) tx2 = X ty2 = Y tz2 = Z R(0, 0, Math.PI*2/rw*j) ax2 = X ay2 = Y az2 = Z p1a = Math.atan2(ax2-ax1,az2-az1) p2a = Math.PI/2+Math.acos((ay2-ay1)/(Math.hypot(ax2-ax1,ay2-ay1,az2-az1)+.001)) X = S(p=Math.PI*2/parts*m) * ls3 Y = C(p) * ls3 Z = 0 R(Math.PI*2/rw*(j)*twists,0,0) tx1b = X ty1b = Y tz1b = Z R(0, 0, Math.PI*2/rw*j) ax1b = X ay1b = Y az1b = Z X = S(p=Math.PI*2/parts*m) * ls3 Y = C(p) * ls3 Z = 0 R(Math.PI*2/rw*(j+1)*twists,0,0) tx2b = X ty2b = Y tz2b = Z R(0, 0, Math.PI*2/rw*(j+1)) ax2b = X ay2b = Y az2b = Z p1b = Math.atan2(ax2b-ax1b,az2b-az1b) p2b = Math.PI/2+Math.acos((ay2b-ay1b)/(Math.hypot(ax2b-ax1b,ay2b-ay1b,az2b-az1b)+.001)) } a = [] X = S(p=Math.PI*2/cl*i) * ls1 Y = C(p) * ls1 Z = 0 //R(0,0,-p1a) R(prl1,p2a,0) X += ls2 + tx1, Y += ty1, Z += tz1 R(0, 0, Math.PI*2/rw*j) a = [...a, [X,Y,Z]] X = S(p=Math.PI*2/cl*(i+1)) * ls1 Y = C(p) * ls1 Z = 0 //R(0,0,-p1a) R(prl1,p2a,0) X += ls2 + tx1, Y += ty1, Z += tz1 R(0, 0, Math.PI*2/rw*j) a = [...a, [X,Y,Z]] X = S(p=Math.PI*2/cl*(i+1)) * ls1 Y = C(p) * ls1 Z = 0 //R(0,0,-p1b) R(prl2,p2b,0) X += ls2 + tx2, Y += ty2, Z += tz2 R(0, 0, Math.PI*2/rw*(j+1)) a = [...a, [X,Y,Z]] X = S(p=Math.PI*2/cl*i) * ls1 Y = C(p) * ls1 Z = 0 //R(0,0,-p1b) R(prl2,p2b,0) X += ls2 + tx2, Y += ty2, Z += tz2 R(0, 0, Math.PI*2/rw*(j+1)) a = [...a, [X,Y,Z]] ret = [...ret, a] } } return ret } G_ = 100000, iSTc = 5e3 ST = Array(iSTc).fill().map(v=>{ X = (Rn()-.5)*G_ Y = (Rn()-.5)*G_ Z = (Rn()-.5)*G_ return [X,Y,Z] }) obj = subDividedTetrahedron(5,4,4)//await loadOBJ('https://srmcgann.github.io/objs/brain.obj', 3, 0,5,1, 0,0,Math.PI) splodeFreq = 100 splosions = [] iSplodev = .3 spawnSplosion = () => { G = 4 X = (Rn()-.5)*G Y = (Rn()-.5)*G Z = (Rn()-.5)*G for(let m=50;m--;)spawnSparks(X,Y,Z,3) for(m=100;m--;){ p1 = Rn()*Math.PI*2 p2 = Rn()<.5 ? Math.PI-Rn()**.5*Math.PI/2 : Rn()**.5*Math.PI/2 vx = S(p1) * S(p2) * iSplodev vy = C(p2) * iSplodev vz = C(p1) * S(p2) * iSplodev splosions = [...splosions, [X+vx*2,Y+vy*2,Z+vz*2,vx,vy,vz,1,[]]] } } sparks = [] iSparksv = .05 spawnSparks = (X,Y,Z,ov=1) => { for(m = 5; m--;){ p1 = Rn()*Math.PI*2 p2 = Rn()<.5 ? Math.PI-Rn()**.5*Math.PI/2 : Rn()**.5*Math.PI/2 vx = S(p1) * S(p2) *iSparksv*ov vy = C(p2) *iSparksv*ov vz = C(p1) * S(p2) *iSparksv*ov sparks = [...sparks, [X+vx/2,Y+vy/2,Z+vz/2,vx,vy,vz,1]] } } } oX=0, oY=0, oZ=Math.min(24,Math.max(8,((.3+S(t))*100))) Rl=0, Pt = .2-S(t/3), Yw = Math.PI/2 - C(t/4)*4 x.globalAlpha = 1 x.fillStyle='#000C' x.fillRect(0,0,c.width,c.height) x.lineJoin = x.lineCap = 'roud' ST.map(v=>{ X = v[0] Y = v[1] Z = v[2] R(Rl,Pt,Yw,1) if(Z>0){ if((x.globalAlpha = Math.min(1,(Z/1e4)**2))>.1){ s = Math.min(1e3, 400000/Z) x.fillStyle = '#ffffff04' l = Q() x.fillRect(l[0]-s/2,l[1]-s/2,s,s) s/=5 x.fillStyle = '#fffa' x.fillRect(l[0]-s/2,l[1]-s/2,s,s) } } }) x.globalAlpha = 1 obj.map(v=>{ x.beginPath() v.map(q=>{ X = q[0] Y = q[1] Z = q[2] R(Rl,Pt,Yw,1) if(Z>0)x.lineTo(...Q()) }) stroke('#f001','#ff000006',3,true) }) if(!((t*60|0)%splodeFreq)) spawnSplosion() splosions = splosions.filter(v=>v[6]>0) rv = .425 anticipation = 1.33 variation = 0 splosions.map(v=>{ tx1 = v[0] += v[3] ty1 = v[1] += v[4] tz1 = v[2] += v[5] tx2 = tx1 + v[3]*anticipation ty2 = ty1 + v[4]*anticipation tz2 = tz1 + v[5]*anticipation obj.map(q=>{ ax = ay = az = 0 q.map(n=>{ ax += n[0] ay += n[1] az += n[2] }) ax /= q.length ay /= q.length az /= q.length d = Math.hypot(a = ax - (tx1 + tx2) / 2,b = ay - (ty1 + ty2) / 2,e = az - (tz1 + tz2) / 2) if(d<1.5){ if(l=lineFaceI(tx1,ty1,tz1,tx2,ty2,tz2,q,true,false)){ vx = l[1][0] vy = l[1][1] vz = l[1][2] d = Math.hypot(vx,vy,vz) vx /= d vy /= d vz /= d v[3] += vx * rv + (Rn()-.5) * variation v[4] += vy * rv + (Rn()-.5) * variation v[5] += vz * rv + (Rn()-.5) * variation //v[6] = 0 spawnSparks(...l[0]) } } }) d = Math.hypot(v[3],v[4],v[5]) v[3] /= d v[4] /= d v[5] /= d v[3] *= iSplodev v[4] *= iSplodev v[5] *= iSplodev v[7] = [...v[7], [tx1,ty1,tz1]] v[7] = v[7].filter((q,j) => v[7].length<20 || v[7].length>=20 && j) v[7].map((q,j) => { if(j){ x.beginPath() l = j X = v[7][l][0] Y = v[7][l][1] Z = v[7][l][2] R(Rl,Pt,Yw,1) if(Z>0) x.lineTo(...Q()) l = j-1 X = v[7][l][0] Y = v[7][l][1] Z = v[7][l][2] R(Rl,Pt,Yw,1) if(Z>0) x.lineTo(...Q()) stroke(`hsla(${t*600-360/v[7].length*j},99%,${50+50/v[7].length*j}%,.75)`,'',j/1.5*v[6],false) } }) v[6] -= .01 }) sparks = sparks.filter(v=>v[6]>.1) grav = .002 sparks.map(v=>{ X = v[0] += v[3] Y = v[1] += v[4] += grav Z = v[2] += v[5] R(Rl,Pt,Yw,1) if(Z>0){ l = Q() s = Math.min(3e3, 2e3/Z*v[6]) x.fillStyle = '#ff000004' x.fillRect(l[0]-s/2,l[1]-s/2,s,s) s/=3 x.fillStyle = '#ff880010' x.fillRect(l[0]-s/2,l[1]-s/2,s,s) s/=3 x.fillStyle = '#ffffffff' x.fillRect(l[0]-s/2,l[1]-s/2,s,s) } v[6]-=.025 }) t+=1/60 requestAnimationFrame(Draw) } Draw()
粒子
时间
文字
hover
canvas
3d
游戏
音乐
火焰
水波
轮播图
鼠标跟随
动画
css
加载动画
导航
菜单
按钮
滑块
tab
弹出层
统计图
svg
×
Close
在线代码下载提示
开通在线代码永久免费下载,需支付20jQ币
开通后,在线代码模块中所有代码可终身免费下!
您已开通在线代码永久免费下载,关闭提示框后,点下载代码可直接下载!
您已经开通过在线代码永久免费下载
对不起,您的jQ币不足!可通过发布资源 或
直接充值获取jQ币
取消
开通下载
<!doctype html> <html> <head> <meta charset="utf-8"> <title>四面体粒子动画-jq22.com</title> <script src="https://www.jq22.com/jquery/jquery-1.10.2.js"></script> <style>
</style> </head> <body>
<script>
</script>
</body> </html>
2012-2021 jQuery插件库版权所有
jquery插件
|
jq22工具库
|
网页技术
|
广告合作
|
在线反馈
|
版权声明
沪ICP备13043785号-1
浙公网安备 33041102000314号